arXiv:1212.4207 [math.AP]AbstractReferencesReviewsResources
Ill-posedness for subcritical hyperdissipative Navier-Stokes equations in the largest critical spaces
Alexey Cheskidov, Roman Shvydkoy
Published 2012-12-18Version 1
We study the incompressible Navier-Stokes equations with a fractional Laplacian and prove the existence of discontinuous Leray-Hopf solutions in the largest critical space with arbitrarily small initial data.
Journal: J. Math. Phys. 53, 115620 (2012)
DOI: 10.1063/1.4765332
Categories: math.AP
Keywords: largest critical space, subcritical hyperdissipative navier-stokes equations, ill-posedness, arbitrarily small initial data, fractional laplacian
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1302.7084 [math.AP] (Published 2013-02-28)
Ill-posedness of the incompressible Navier-Stokes equations in $\dot{F}^{-1,q}_{\infty}({R}^3)$
Fractional Laplacian on the torus
arXiv:1509.06697 [math.AP] (Published 2015-09-22)
On the Asymptotic Analysis of Problems Involving Fractional Laplacian in Cylindrical Domains Tending to Infinity