arXiv Analytics

Sign in

arXiv:1211.6881 [math.RT]AbstractReferencesReviewsResources

BGP-Reflection Functors and Lusztig's Symmetries of Modified Quantized Enveloping Algebras

Jie Xiao, Minghui Zhao

Published 2012-11-29Version 1

Let $\mathbf{U}$ be the quantized enveloping algebra and $\dot{\mathbf{U}}$ its modified form. Lusztig gives some symmetries on $\mathbf{U}$ and $\dot{\mathbf{U}}$. Since the realization of $\mathbf{U}$ by the reduced Drinfeld double of the Ringel-Hall algebra, one can apply the BGP-reflection functors to the double Ringel-Hall algebra to obtain Lusztig's symmetries on $\mathbf{U}$ and their important properties, for instance, the braid relations. In this paper, we define a modified form $\dot{\mathcal{H}}$ of the Ringel-Hall algebra and realize the Lusztig's symmetries on $\dot{\mathbf{U}}$ by applying the BGP-reflection functors to $\dot{\mathcal{H}}$.

Related articles: Most relevant | Search more
arXiv:1501.01778 [math.RT] (Published 2015-01-08)
Geometric realizations of Lusztig's symmetries
arXiv:math/0511384 [math.RT] (Published 2005-11-15, updated 2006-06-19)
Applications of BGP-reflection functors: isomorphisms of cluster algebras
arXiv:1002.1509 [math.RT] (Published 2010-02-08, updated 2010-03-20)
Crystal bases of modified quantized enveloping algebras and a double RSK correspondence