arXiv:1211.5947 [math.FA]AbstractReferencesReviewsResources
Interpolation of Ces{à}ro sequence and function spaces
Sergey V. Astashkin, Lech Maligranda
Published 2012-11-26Version 1
The interpolation property of Ces{\`a}ro sequence and function spaces is investigated. It is shown that $Ces_p(I)$ is an interpolation space between $Ces_{p_0}(I)$ and $Ces_{p_1}(I)$ for $1 < p_0 < p_1 \leq \infty$ and $1/p = (1 - \theta)/p_0 + \theta /p_1$ with $0 < \theta < 1$, where $I = [0, \infty)$ or $[0, 1]$. The same result is true for Ces{\`a}ro sequence spaces. On the other hand, $Ces_p[0, 1]$ is not an interpolation space between $Ces_1[0, 1]$ and $Ces_{\infty}[0, 1]$.
Comments: 28 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:2210.05114 [math.FA] (Published 2022-10-11)
Stable phase retrieval in function spaces
Nonlinear subsets of function spaces and spaceability
arXiv:math/0404526 [math.FA] (Published 2004-04-29)
Estimates of disjoint sequences in Banach lattices and R.I. function spaces