arXiv:1211.3929 [math.CO]AbstractReferencesReviewsResources
Fat Hoffman graphs with smallest eigenvalue greater than -3
Akihiro Munemasa, Yoshio Sano, Tetsuji Taniguchi
Published 2012-11-16, updated 2013-12-24Version 4
In this paper, we give a combinatorial characterization of the special graphs of fat Hoffman graphs containing $\mathfrak{K}_{1,2}$ with smallest eigenvalue greater than -3, where $\mathfrak{K}_{1,2}$ is the Hoffman graph having one slim vertex and two fat vertices.
Comments: 21+5 pages
Journal: Discrete Applied Mathematics 176 (2014) 78-88
Keywords: smallest eigenvalue greater, combinatorial characterization, fat vertices, slim vertex, special graphs
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2012.13149 [math.CO] (Published 2020-12-24)
Mixed graphs with smallest eigenvalue greater than $-\frac{\sqrt{5}+1}{2}$
arXiv:2010.14349 [math.CO] (Published 2020-10-27)
Star edge-coloring of some special graphs
Unmixed bipartite graphs