arXiv Analytics

Sign in

arXiv:1211.3259 [math.AG]AbstractReferencesReviewsResources

Symmetries and stabilization for sheaves of vanishing cycles

Christopher Brav, Vittoria Bussi, Delphine Dupont, Dominic Joyce, Balazs Szendroi

Published 2012-11-14, updated 2015-06-04Version 4

Let $U$ be a smooth $\mathbb C$-scheme, $f:U\to\mathbb A^1$ a regular function, and $X=$Crit$(f)$ the critical locus, as a $\mathbb C$-subscheme of $U$. Then one can define the "perverse sheaf of vanishing cycles" $PV_{U,f}$, a perverse sheaf on $X$. This paper proves four main results: (a) Suppose $\Phi:U\to U$ is an isomorphism with $f\circ\Phi=f$ and $\Phi\vert_X=$id$_X$. Then $\Phi$ induces an isomorphism $\Phi_*:PV_{U,f}\to PV_{U,f}$. We show that $\Phi_*$ is multiplication by det$(d\Phi\vert_X)=1$ or $-1$. (b) $PV_{U,f}$ depends up to canonical isomorphism only on $X^{(3)},f^{(3)}$, for $X^{(3)}$ the third-order thickening of $X$ in $U$, and $f^{(3)}=f\vert_{X^{(3)}}:X^{(3)}\to\mathbb A^1$. (c) If $U,V$ are smooth $\mathbb C$-schemes, $f:U\to\mathbb A^1$, $g:V\to\mathbb A^1$ are regular, $X=$Crit$(f)$, $Y=$Crit$(g)$, and $\Phi:U\to V$ is an embedding with $f=g\circ\Phi$ and $\Phi\vert_X:X\to Y$ an isomorphism, there is a natural isomorphism $\Theta_\Phi:PV_{U,f}\to\Phi\vert_X^*(PV_{V,g})\otimes_{\mathbb Z_2}P_\Phi$, for $P_\Phi$ a natural principal $\mathbb Z_2$-bundle on $X$. (d) If $(X,s)$ is an oriented d-critical locus in the sense of Joyce arXiv:1304.4508, there is a natural perverse sheaf $P_{X,s}$ on $X$, such that if $(X,s)$ is locally modelled on Crit$(f:U\to\mathbb A^1)$ then $P_{X,s}$ is locally modelled on $PV_{U,f}$. We also generalize our results to replace $U,X$ by complex analytic spaces, and $PV_{U,f}$ by $\mathcal D$-modules, or mixed Hodge modules. We discuss applications of (d) to categorifying Donaldson-Thomas invariants of Calabi-Yau 3-folds, and to defining a 'Fukaya category' of Lagrangians in a complex symplectic manifold using perverse sheaves. This is the third in a series of papers arXiv:1304.4508, arXiv:1305.6302, arXiv:1305.6428, arXiv:1312.0090, arXiv:1403.2403, arXiv:1404.1329, arXiv:1504.00690.

Comments: 77 pages, LaTeX. (v4) corrections, new Appendix by Joerg Schuermann
Journal: Journal of Singularities 11 (2015), 85-151
Categories: math.AG, math.CV, math.DG
Subjects: 32S30, 32S60, 14C30
Related articles: Most relevant | Search more
arXiv:2309.07829 [math.AG] (Published 2023-09-14)
Minimality of the $\mathcal D$-groupoid of symmetries of a projective structure
arXiv:math/9910156 [math.AG] (Published 1999-10-28)
Vanishing cycles and Hermitian duality
arXiv:math/0605369 [math.AG] (Published 2006-05-14, updated 2007-02-11)
Vanishing Cycles and Thom's $a_f$ Condition