arXiv:1211.1731 [math.NT]AbstractReferencesReviewsResources
Toroidal compactifications of integral models of Shimura varieties of Hodge type
Published 2012-11-08, updated 2015-05-29Version 5
We construct projective toroidal compactifications for integral models of Shimura varieties of Hodge type that parameterize isogenies of abelian varieties with additional structure. We also construct integral models of the minimal (Satake-Baily-Borel) compactification. Our results essentially reduce the problem to understanding the integral models themselves. As such, they cover all previously known cases of PEL type, as well as all cases of Hodge type involving parahoric level structures. At primes where the level is hyperspecial, we show that our compactifications are canonical in a precise sense. We also provide a new proof of Y. Morita's conjecture on the everywhere good reduction of abelian varieties whose Mumford-Tate group is anisotropic modulo center. Along the way, we demonstrate an interesting rationality property of Hodge cycles on abelian varieties with respect to p-adic analytic uniformizations.