arXiv Analytics

Sign in

arXiv:1211.0504 [math.PR]AbstractReferencesReviewsResources

Stein's method and the rank distribution of random matrices over finite fields

Jason Fulman, Larry Goldstein

Published 2012-11-02, updated 2015-05-14Version 4

With ${\mathcal{Q}}_{q,n}$ the distribution of $n$ minus the rank of a matrix chosen uniformly from the collection of all $n\times(n+m)$ matrices over the finite field $\mathbb{F}_q$ of size $q\ge2$, and ${\mathcal{Q}}_q$ the distributional limit of ${\mathcal{Q}}_{q,n}$ as $n\rightarrow\infty$, we apply Stein's method to prove the total variation bound $\frac{1}{8q^{n+m+1}}\leq\|{\mathcal{Q}}_{q,n}-{\mathcal{Q}}_q\|_{\mathrm{TV}}\leq\frac{3}{q^{n+m+1}}$. In addition, we obtain similar sharp results for the rank distributions of symmetric, symmetric with zero diagonal, skew symmetric, skew centrosymmetric and Hermitian matrices.

Comments: Published at http://dx.doi.org/10.1214/13-AOP889 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annals of Probability 2015, Vol. 43, No. 3, 1274-1314
Categories: math.PR, math.CO
Related articles: Most relevant | Search more
arXiv:1409.5396 [math.PR] (Published 2014-09-18)
Spectral Analysis of Random Matrices with a Rank One Pattern of Variances
arXiv:2308.14580 [math.PR] (Published 2023-08-28)
Distribution of the number of zeros of polynomials over a finite field
arXiv:1106.4366 [math.PR] (Published 2011-06-22, updated 2013-04-18)
Large Deviations for Random Matrices