arXiv Analytics

Sign in

arXiv:1211.0389 [math.PR]AbstractReferencesReviewsResources

Semicircle Law for a Class of Random Matrices with Dependent Entries

F. Götze, A. Naumov, A. Tikhomirov

Published 2012-11-02, updated 2013-03-18Version 2

In this paper we study ensembles of random symmetric matrices $\X_n = {X_{ij}}_{i,j = 1}^n$ with dependent entries such that $\E X_{ij} = 0$, $\E X_{ij}^2 = \sigma_{ij}^2$, where $\sigma_{ij}$ may be different numbers. Assuming that the average of the normalized sums of variances in each row converges to one and Lindeberg condition holds we prove that the empirical spectral distribution of eigenvalues converges to Wigner's semicircle law.

Related articles: Most relevant | Search more
arXiv:1306.2887 [math.PR] (Published 2013-06-12, updated 2014-10-10)
Delocalization of eigenvectors of random matrices with independent entries
arXiv:1206.5180 [math.PR] (Published 2012-06-22, updated 2013-01-30)
Invertibility of random matrices: unitary and orthogonal perturbations
arXiv:1103.2801 [math.PR] (Published 2011-03-14, updated 2011-05-09)
Random matrices: Universal properties of eigenvectors