arXiv:1210.8346 [astro-ph.GA]AbstractReferencesReviewsResources
SgrA* emission at 7mm: variability and periodicity
Pedro Paulo B. Beaklini, Zulema Abraham
Published 2012-10-25Version 1
We present the result of 6 years monitoring of SgrA*, radio source associated to the supermassive black hole at the centre of the Milky Way. Single dish observations were performed with the Itapetinga radio telescope at 7 mm, and the contribution of the SgrA complex that surrounds SgrA* was subtracted and used as instantaneous calibrator. The observations were alternated every 10 min with those of the HII region SrgB2, which was also used as a calibrator. The reliability of the detections was tested comparing them with simultaneous observations using interferometric techniques. During the observing period we detected a continuous increase in the SgrA* flux density starting in 2008, as well as variability in timescales of days and strong intraday fluctuations. We investigated if the continuous increase in flux density is compatible with free-free emission from the tail of the disrupted compact cloud that is falling towards SgrA* and concluded that the increase is most probably intrinsic to SgrA*. Statistical analysis of the light curve using Stellingwerf and Structure Function methods revealed the existence of two minima, 156 +/- 10 and 220 +/- 10 days. The same statistical tests applied to a simulated light curve constructed from two quadratic sinusoidal functions superimposed to random variability reproduced very well the results obtained with the real light curve, if the periods were 57 and 156 days. Moreover, when a daily sampling was used in the simulated light curve, it was possible to reproduce the 2.3 GHz structure function obtained by Falcke in 1999, which revealed the 57 days period, while the 106 periodicity found by Zhao et al in 2001 could be a resonance of this period.