arXiv Analytics

Sign in

arXiv:1210.7829 [astro-ph.GA]AbstractReferencesReviewsResources

Diversity of Type Ia Supernovae Imprinted in Chemical Abundances

Takuji Tsujimoto, Toshikazu Shigeyama

Published 2012-10-29Version 1

A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit a SN Ia-like elemental feature including a very low [Mg/Fe] (~-1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr,Mn,Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth, and gives a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr,Mn,Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8+0.6 solar mass white dwarf merger.

Comments: 5 pages including 3 figures, accepted for publication in ApJ Letters
Categories: astro-ph.GA
Related articles: Most relevant | Search more
arXiv:1309.1663 [astro-ph.GA] (Published 2013-09-06, updated 2013-09-12)
Analysis of chemical abundances in planetary nebulae with [WC] central stars. II. Chemical abundances and the abundance discrepancy factor
arXiv:1702.01547 [astro-ph.GA] (Published 2017-02-06)
Baade's window with APOGEE: Metallicities, ages and chemical abundances
arXiv:2307.14529 [astro-ph.GA] (Published 2023-07-26)
Chemical Abundances of a Sample of Oxygen-dominated Galaxies