arXiv Analytics

Sign in

arXiv:1210.3285 [math.GR]AbstractReferencesReviewsResources

A 2-base for inverse semigroups

Joao Araujo, Michael Kinyon, R. Padmanabhan

Published 2012-10-11Version 1

An open problem in the theory of inverse semigroups was whether the variety of such semigroups, when viewed as algebras with a binary operation and a unary operation, is 2-based, that is, has a base for its identities consisting of 2 independent axioms. In this note, we announce the affirmative solution to this problem: the identities \[ \quad x(x'x) = x \qquad \quad x (x' (y (y' ((z u)' w')'))) = y (y' (x (x' ((w z) u)))) \] form a base for inverse semigroups where ${}'$ turns out to be the natural inverse operation. We recount here the history of the problem including our previous efforts to find a 2-base using automated deduction and the method that finally worked. We describe our efforts to simplify the proof using \textsc{Prover9}, present the simplified proof itself and conclude with some open problems.

Related articles: Most relevant | Search more
arXiv:1109.1064 [math.GR] (Published 2011-09-06, updated 2012-04-19)
Algebra in superextensions of inverse semigroups
arXiv:math/9812132 [math.GR] (Published 1998-12-22)
Free crossed resolutions of groups and presentations of modules of identities among relations
arXiv:1906.06415 [math.GR] (Published 2019-06-14)
Representations of inverse semigroups in complete atomistic inverse algebras