arXiv Analytics

Sign in

arXiv:1209.3536 [math.RT]AbstractReferencesReviewsResources

R-matrices for quantum affine algebras and Khovanov-Lauda-Rouquier algebras, I

Seok-Jin Kang, Masaki Kashiwara, Myungho Kim

Published 2012-09-17, updated 2013-04-04Version 2

Let us consider a finite set of pairs consisting of good $U'_q(g)$-modules and invertible elements. The distribution of poles of normalized R-matrices yields Khovanov-Lauda-Rouquier algebras We define a functor from the category of finite-dimensional modules over the KLR algebra to the category of finite-dimensional $U_q'(g)$-modules. We show that the functor sends convolution products to tensor products and is exact if the KLR albera is of type A, D, E.

Related articles: Most relevant | Search more
arXiv:1112.6189 [math.RT] (Published 2011-12-28, updated 2014-09-03)
Vertex operators and 2-representations of quantum affine algebras
arXiv:math/0503020 [math.RT] (Published 2005-03-01, updated 2005-03-03)
Characters of fundamental representations of quantum affine algebras
arXiv:2311.03905 [math.RT] (Published 2023-11-07)
Young wall realizations of level 1 irreducible highest weight and Fock space crystals of quantum affine algebras in type E