arXiv Analytics

Sign in

arXiv:1208.4950 [astro-ph.SR]AbstractReferencesReviewsResources

On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

O. C. Jones, F. Kemper, B. A. Sargent, I. McDonald, C. Gielen, Paul M. Woods, G. C. Sloan, M. L. Boyer, A. A. Zijlstra, G. C. Clayton, K. E. Kraemer, S. Srinivasan, P. M. E. Ruffle

Published 2012-08-24Version 1

We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer IRS and Infrared Space Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally-rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ~10^-9 solar masses/year. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-micron feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-micron band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.

Related articles: Most relevant | Search more
arXiv:0908.3087 [astro-ph.SR] (Published 2009-08-21)
Luminosities and mass-loss rates of SMC and LMC AGB stars and Red Supergiants
arXiv:1608.01729 [astro-ph.SR] (Published 2016-08-05)
The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud
arXiv:1601.02329 [astro-ph.SR] (Published 2016-01-11)
Absorption at 11 microns in the interstellar medium and embedded sources: evidence for crystalline silicates