arXiv:1207.4414 [math.LO]AbstractReferencesReviewsResources
Model-theoretic characterization of intuitionistic propositional formulas
Published 2012-07-18Version 1
Notions of k-asimulation and asimulation are introduced as asymmetric counterparts to k-bisimulation and bisimulation, respectively. It is proved that a first-order formula is equivalent to a standard translation of an intuitionistic propositional formula iff it is invariant with respect to k-asimulations for some k, and then that a first-order formula is equivalent to a standard translation of an intuitionistic propositional formula iff it is invariant with respect to asimulations. Finally, it is proved that a first-order formula is intuitionistically equivalent to a standard translation of an intuitionistic propositional formula iff it is invariant with respect to asimulations between intuitionistic models.