arXiv Analytics

Sign in

arXiv:1206.6953 [math.PR]AbstractReferencesReviewsResources

Return Probabilities for the Reflected Random Walk on $\mathbb N_0$

Rim Essifi, Marc Peigné

Published 2012-06-29Version 1

Let $(Y_n)$ be a sequence of i.i.d. $\mathbb Z$-valued random variables with law $\mu$. The reflected random walk $(X_n)$ is defined recursively by $X_0=x \in \mathbb N_0, X_{n+1}=|X_n+Y_{n+1}|$. Under mild hypotheses on the law $\mu$, it is proved that, for any $ y \in \mathbb N_0$, as $n \to +\infty$, one gets $\mathbb P_x[X_n=y]\sim C_{x, y} R^{-n} n^{-3/2}$ when $\sum_{k\in \mathbb Z} k\mu(k) >0$ and $\mathbb P_x[X_n=y]\sim C_{y} n^{-1/2}$ when $\sum_{k\in \mathbb Z} k\mu(k) =0$, for some constants $R, C_{x, y}$ and $C_y >0$.

Related articles: Most relevant | Search more
arXiv:0906.4514 [math.PR] (Published 2009-06-24, updated 2010-06-25)
Most likely paths to error when estimating the mean of a reflected random walk
arXiv:math/0612306 [math.PR] (Published 2006-12-12)
On recurrence of reflected random walk on the half-line. With an appendix on results of Martin Benda
arXiv:1412.6184 [math.PR] (Published 2014-12-18)
Universality of local times of killed and reflected random walks