arXiv:1206.3070 [math.AP]AbstractReferencesReviewsResources
Regularity estimates for convex functions in Carnot-Carathéodory spaces
Valentino Magnani, Matteo Scienza
Published 2012-06-14, updated 2014-08-06Version 2
We prove some regularity estimates for a class of convex functions in Carnot-Carath\'eodory spaces, generated by H\"ormander vector fields. Our approach relies on both the structure of metric balls induced by H\"ormander vector fields and local upper estimates for the corresponding subharmonic functions.
Comments: 25 pages
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:0804.2833 [math.AP] (Published 2008-04-17)
Inequalities of Hardy-Sobolev type in Carnot-Carathéodory spaces
arXiv:2407.05882 [math.AP] (Published 2024-07-08)
$L^p$ estimates for the Laplacian via blow-up
arXiv:2410.19970 [math.AP] (Published 2024-10-25)
Improved regularity estimates for Hardy-Hénon-type equations driven by the $\infty$-Laplacian