arXiv Analytics

Sign in

arXiv:1206.2406 [math.DS]AbstractReferencesReviewsResources

Polynomial decay of correlations in the generalized baker's transformation

Christopher Bose, Rua Murray

Published 2012-06-11Version 1

We introduce a family of area preserving generalized baker's transformations acting on the unit square and having sharp polynomial rates of mixing for Holder data. The construction is geometric, relying on the graph of a single variable "cut function". Each baker's map B is non-uniformly hyperbolic and while the exact mixing rate depends on B, all polynomial rates can be attained. The analysis of mixing rates depends on building a suitable Young tower for an expanding factor. The mechanisms leading to a slow rate of correlation decay are especially transparent in our examples due to the simple geometry in the construction. For this reason we propose this class of maps as an excellent testing ground for new techniques for the analysis of decay of correlations in non-uniformly hyperbolic systems. Finally, some of our examples can be seen to be extensions of certain 1-D non-uniformly expanding maps that have appeared in the literature over the last twenty years thereby providing a unified treatment of these interesting and well-studied examples.

Comments: 24 pages, 2 figures
Journal: Int. J. Bifurcation Chaos 23, 1350130 (2013)
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:2002.09953 [math.DS] (Published 2020-02-23)
On mix-norms and the rate of decay of correlations
arXiv:1212.0889 [math.DS] (Published 2012-12-04)
Polynomial decay of correlations in linked-twist maps
arXiv:math/0408185 [math.DS] (Published 2004-08-13)
An invariance principle for maps with polynomial decay of correlations