arXiv Analytics

Sign in

arXiv:1206.2251 [math.PR]AbstractReferencesReviewsResources

A Necessary and Sufficient Condition for Edge Universality of Wigner matrices

Ji Oon Lee, Jun Yin

Published 2012-06-11, updated 2012-06-26Version 2

In this paper, we prove a necessary and sufficient condition for Tracy-Widom law of Wigner matrices. Consider $N \times N$ symmetric Wigner matrices $H$ with $H_{ij} = N^{-1/2} x_{ij}$, whose upper right entries $x_{ij}$ $(1\le i< j\le N)$ are $i.i.d.$ random variables with distribution $\mu$ and diagonal entries $x_{ii}$ $(1\le i\le N)$ are $i.i.d.$ random variables with distribution $\wt \mu$. The means of $\mu$ and $\wt \mu$ are zero, the variance of $\mu$ is 1, and the variance of $\wt \mu $ is finite. We prove that Tracy-Widom law holds if and only if $\lim_{s\to \infty}s^4\p(|x_{12}| \ge s)=0$. The same criterion holds for Hermitian Wigner matrices.

Related articles: Most relevant | Search more
arXiv:1705.05527 [math.PR] (Published 2017-05-16)
Rigidity and Edge Universality of Discrete $β$-Ensembles
arXiv:1607.06873 [math.PR] (Published 2016-07-23)
A necessary and sufficient condition for edge universality at the largest singular values of covariance matrices
arXiv:math/0505692 [math.PR] (Published 2005-05-31)
Rank Independence and Rearrangements of Random Variables