arXiv Analytics

Sign in

arXiv:1206.0779 [math.CO]AbstractReferencesReviewsResources

A note on the voting problem

M. A. Fiol

Published 2012-06-04Version 1

Let $v(n)$ be the minimum number of voters with transitive preferences which are needed to generate any strong preference pattern (ties not allowed) on $n$ candidates. Let $k=\lfloor \log_2 n\rfloor$. We show that $v(n)\le n-k$ if $n$ and $k$ have different parity, and $v(n)\le n-k+1$ otherwise.

Journal: Stochastica XIII-1 (1992), 155-158
Categories: math.CO
Subjects: 05C20, 05C99
Related articles: Most relevant | Search more
arXiv:1103.0067 [math.CO] (Published 2011-03-01)
Cycle-saturated graphs with minimum number of edges
arXiv:math/9807022 [math.CO] (Published 1998-07-03)
The leafage of a chordal graph
arXiv:1202.6461 [math.CO] (Published 2012-02-29)
The Minimum Number of Dependent Arcs and a Related Parameter of Generalized Mycielski Graphs