arXiv Analytics

Sign in

arXiv:1206.0424 [math.NT]AbstractReferencesReviewsResources

On the Diophantine equation cy^l=(x^p-1)/(x-1)

Mohammad Sadek

Published 2012-06-03Version 1

Let p, c be distinct odd primes, and l \ge 2 an integer. We find sufficient conditions for the Diophantine equation cy^l=(x^p-1)/(x-1) not to have integer solutions

Comments: 7 pages
Journal: Publ. Math. Debrecen, 2013, volume 82, Number 2, pp. 373-378
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1404.1060 [math.NT] (Published 2014-04-03, updated 2014-04-17)
On the Diophantine equation $pq=x^2+ny^2$
arXiv:1709.00400 [math.NT] (Published 2017-09-01)
On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+...+(2x)^{k}=y^n$
arXiv:0812.0330 [math.NT] (Published 2008-12-01)
Polynomial parametrization of the solutions of Diophantine equations of genus 0