arXiv:1205.4317 [math.FA]AbstractReferencesReviewsResources
A new isomorphic (\ell_1) predual not isomorphic to a complemented subspace of a (C(K)) space
Published 2012-05-19Version 1
An isomorphic (\ell_1)-predual space (X) is constructed such that neither (X) is isomorphic to a subspace of (c_0), nor (C(\omega^\omega)) is isomorphic to a subspace of (X). It follows that (X) is not isomorphic to a complemented subspace of a (C(K)) space.
Comments: 12 pages
DOI: 10.1112/blms/bdt002
Categories: math.FA
Subjects: 46B03
Keywords: isomorphic, complemented subspace
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math/9610215 [math.FA] (Published 1996-10-17)
Operators on $C(ω^α)$ which do not preserve $C(ω^α)$
arXiv:1402.6564 [math.FA] (Published 2014-02-26)
Bourgain-Delbaen $\mathcal{L}^{\infty}$-sums of Banach spaces
arXiv:2003.09878 [math.FA] (Published 2020-03-22)
$c_{0} \widehat{\otimes}_πc_{0}\widehat{\otimes}_πc_{0}$ is not isomorphic to a subspace of $c_{0} \widehat{\otimes}_πc_{0}$