arXiv:1205.4275 [math.LO]AbstractReferencesReviewsResources
Square principles in Pmax extensions
Andrés Eduardo Caicedo, Paul Larson, Grigor Sargsyan, Ralf Schindler, John Steel, Martin Zeman
Published 2012-05-18, updated 2015-12-07Version 2
By forcing with $\mathbb{P}_{\rm max}$ over strong models of determinacy, we obtain models where different square principles at $\omega_2$ and $\omega_3$ fail. In particular, we obtain a model of $2^{\aleph_0}=2^{\aleph_1}=\aleph_2 + \lnot\square(\omega_2) + \lnot\square(\omega_3)$.
Comments: Revised version, incorporating the referee's suggestions
Categories: math.LO
Related articles: Most relevant | Search more
arXiv:1605.05489 [math.LO] (Published 2016-05-18)
Aronszajn trees, square principles, and stationary reflection
arXiv:2105.00322 [math.LO] (Published 2021-05-01)
Failures of square in Pmax extensions of Chang models
arXiv:1503.06703 [math.LO] (Published 2015-03-23)
The *-variation of Banach-Mazur game and forcing axioms