arXiv Analytics

Sign in

arXiv:1205.3690 [math.PR]AbstractReferencesReviewsResources

Speed of convergence to equilibrium in Wasserstein metrics for Kac-s like kinetic equations

Federico Bassetti, Eleonora Perversi

Published 2012-05-16, updated 2012-10-22Version 2

This work deals with a class of one-dimensional measure-valued kinetic equations, which constitute extensions of the Kac caricature. It is known that if the initial datum belongs to the domain of normal attraction of an \alpha-stable law, the solution of the equation converges weakly to a suitable scale mixture of centered \alpha-stable laws. In this paper we present explicit exponential rates for the convergence to equilibrium in Kantorovich-Wasserstein distances of order p>\alpha, under the natural assumption that the distance between the initial datum and the limit distribution is finite. For \alpha=2 this assumption reduces to the finiteness of the absolute moment of order p of the initial datum. On the contrary, when \alpha<2, the situation is more problematic due to the fact that both the limit distribution and the initial datum have infinite absolute moment of any order p >\alpha. For this case, we provide sufficient conditions for the finiteness of the Kantorovich-Wasserstein distance.

Related articles: Most relevant | Search more
arXiv:math/0310210 [math.PR] (Published 2003-10-15, updated 2006-02-09)
The harmonic explorer and its convergence to SLE(4)
arXiv:math/0308018 [math.PR] (Published 2003-08-04)
On the rate of convergence to equilibrium for countable ergodic Markov chains
arXiv:math/9912008 [math.PR] (Published 1999-12-01)
Rate of convergence to equilibrium of symmetric simple exclusion processes