arXiv:1205.2515 [math.PR]AbstractReferencesReviewsResources
A short proof of Paouris' inequality
Radosław Adamczak, Rafał Latała, Alexander E. Litvak, Krzysztof Oleszkiewicz, Alain Pajor, Nicole Tomczak-Jaegermann
Published 2012-05-11Version 1
We give a short proof of a result of G. Paouris on the tail behaviour of the Euclidean norm $|X|$ of an isotropic log-concave random vector $X\in\R^n$, stating that for every $t\geq 1$, $P(|X|\geq ct\sqrt n)\leq \exp(-t\sqrt n)$. More precisely we show that for any log-concave random vector $X$ and any $p\geq 1$, $(E|X|^p)^{1/p}\sim E |X|+\sup_{z\in S^{n-1}}(E |< z,X>|^p)^{1/p}$.
Related articles: Most relevant | Search more
arXiv:1205.1284 [math.PR] (Published 2012-05-07)
An Inequality Related to Negative Definite Functions
arXiv:1010.2193 [math.PR] (Published 2010-10-11)
Golden-Thompson from Davis
arXiv:1409.6255 [math.PR] (Published 2014-09-22)
Martingale Inequalities for the Maximum via Pathwise Arguments