arXiv Analytics

Sign in

arXiv:1205.2144 [math.CO]AbstractReferencesReviewsResources

Dual polar graphs, the quantum algebra U_q(sl_2), and Leonard systems of dual q-Krawtchouk type

Chalermpong Worawannotai

Published 2012-05-10Version 1

In this paper we consider how the following three objects are related: (i) the dual polar graphs; (ii) the quantum algebra U_q(sl_2); (iii) the Leonard systems of dual q-Krawtchouk type. For convenience we first describe how (ii) and (iii) are related. For a given Leonard system of dual q-Krawtchouk type, we obtain two U_q(sl_2)-module structures on its underlying vector space. We now describe how (i) and (iii) are related. Let \Gamma denote a dual polar graph. Fix a vertex x of \Gamma and let T = T(x) denote the corresponding subconstituent algebra. By definition T is generated by the adjacency matrix A of \Gamma and a certain diagonal matrix A* = A*(x) called the dual adjacency matrix that corresponds to x. By construction the algebra T is semisimple. We show that for each irreducible T-module W the restrictions of A and A* to W induce a Leonard system of dual q-Krawtchouk type. We now describe how (i) and (ii) are related. We obtain two U_q(sl_2)-module structures on the standard module of \Gamma. We describe how these two U_q(sl_2)-module structures are related. Each of these U_q(sl_2)-module structures induces a $\mathbb{C}$-algebra homomorphism U_q(sl_2) \rightarrow T. We show that in each case T is generated by the image together with the center of T. Using the combinatorics of \Gamma we obtain a generating set L, F, R, K of T along with some attractive relations satisfied by these generators.

Comments: 66 pages. arXiv admin note: text overlap with arXiv:0708.1992, arXiv:math/0608694, arXiv:0710.4383, arXiv:1108.2484, arXiv:0705.0167, arXiv:math/0608623, arXiv:math/0602416, arXiv:0705.3918, arXiv:0911.0098, arXiv:1108.0458
Categories: math.CO
Subjects: 05E30
Related articles: Most relevant | Search more
arXiv:0906.0116 [math.CO] (Published 2009-05-30)
Tight Frames for Eigenspaces of the Laplacian on Dual Polar Graphs
arXiv:math/0312149 [math.CO] (Published 2003-12-07)
An inequality for regular near polygons
arXiv:1107.0475 [math.CO] (Published 2011-07-03)
Two distance-regular graphs