arXiv Analytics

Sign in

arXiv:1205.0037 [math.NT]AbstractReferencesReviewsResources

On Mordell-Tornheim sums and multiple zeta values

David M. Bradley, Xia Zhou

Published 2012-04-30Version 1

We prove that any Mordell-Tornheim sum with positive integer arguments can be expressed as a rational linear combination of multiple zeta values of the same weight and depth. By a result of Tsumura, it follows that any Mordell-Tornheim sum with weight and depth of opposite parity can be expressed as a rational linear combination of products of multiple zeta values of lower depth.

Comments: 8 pages AMSLaTeX
Journal: Ann. Sci. Math. Qu\'ebec, Vol. 34, No. 1, 2010, pp. 15--23. [MR 2744193] (2011k:11118)
Categories: math.NT
Subjects: 11M41, 11M06
Related articles: Most relevant | Search more
arXiv:0705.0732 [math.NT] (Published 2007-05-05, updated 2007-09-24)
Integrals Over Polytopes, Multiple Zeta Values and Polylogarithms, and Euler's Constant
arXiv:math/0606076 [math.NT] (Published 2006-06-03, updated 2006-12-11)
Renormalization of multiple zeta values
arXiv:math/0405162 [math.NT] (Published 2004-05-10, updated 2004-06-11)
Representation of the Gauss hypergeometric function by multiple polylogarithms and relations of multiple zeta values