arXiv:1204.5979 [math.LO]AbstractReferencesReviewsResources
Integration in algebraically closed valued fields with sections
Published 2012-04-26, updated 2012-05-20Version 2
We construct Hrushovski-Kazhdan style motivic integration in certain expansions of ACVF. Such an expansion is typically obtained by adding a full section or a cross-section from the RV-sort into the VF-sort and some (arbitrary) extra structure in the RV-sort. The construction of integration, that is, the inverse of the lifting map L, is rather straightforward. What is a bit surprising is that the kernel of L is still generated by one element, exactly as in the case of integration in ACVF. The overall construction is more or less parallel to the original Hrushovski-Kazhdan construction. As an application, we show uniform rationality of Igusa zeta functions for non-archimedean local fields with unbounded ramification degrees.