arXiv Analytics

Sign in

arXiv:1203.2029 [math.NA]AbstractReferencesReviewsResources

Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

M. Kovács, S. Larsson, F. Lindgren

Published 2012-03-09, updated 2012-09-19Version 2

We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation.

Related articles: Most relevant | Search more
arXiv:1212.5564 [math.NA] (Published 2012-12-21, updated 2016-03-14)
Weak convergence for a spatial approximation of the nonlinear stochastic heat equation
arXiv:1806.00922 [math.NA] (Published 2018-06-04)
Runge-Kutta semidiscretizations for stochastic Maxwell equations with additive noise
arXiv:0707.4466 [math.NA] (Published 2007-07-30, updated 2008-10-20)
Weak Convergence in the Prokhorov Metric of Methods for Stochastic Differential Equations