arXiv Analytics

Sign in

arXiv:1202.2674 [math.AP]AbstractReferencesReviewsResources

$L^{\infty}$ estimates and uniqueness results for nonlinear parabolic equations with gradient absorption terms

Marie-Françoise Bidaut-Véron, Nguyen Anh Dao

Published 2012-02-13, updated 2013-03-22Version 2

Here we study the nonnegative solutions of the viscous Hamilton-Jacobi problem \[ \left\{\begin{array} [c]{c}% u_{t}-\nu\Delta u+|\nabla u|^{q}=0, u(0)=u_{0}, \end{array} \right. \] in $Q_{\Omega,T}=\Omega\times\left(0,T\right) ,$ where $q>1,\nu\geqq 0,T\in\left(0,\infty\right] ,$ and $\Omega=\mathbb{R}^{N}$ or $\Omega$ is a smooth bounded domain, and $u_{0}\in L^{r}(\Omega),r\geqq1,$ or $u_{0}% \in\mathcal{M}_{b}(\Omega).$ We show $L^{\infty}$ decay estimates, valid for \textit{any weak solution}, \textit{without any conditions a}s $\left\| x\right\| \rightarrow\infty,$ and \textit{without uniqueness assumptions}. As a consequence we obtain new uniqueness results, when $u_{0}\in \mathcal{M}_{b}(\Omega)$ and $q<(N+2)/(N+1),$ or $u_{0}\in L^{r}(\Omega)$ and $q<(N+2r)/(N+r).$ We also extend some decay properties to quasilinear equations of the model type \[ u_{t}-\Delta_{p}u+\left\| u\right\| ^{\lambda-1}u|\nabla u|^{q}=0 \] where $p>1,\lambda\geqq0,$ and $u$ is a signed solution.

Related articles: Most relevant | Search more
arXiv:1702.02129 [math.AP] (Published 2017-02-07)
On stabilization of solutions of nonlinear parabolic equations with a gradient term
arXiv:0807.3177 [math.AP] (Published 2008-07-20, updated 2008-08-14)
On uniqueness of large solutions of nonlinear parabolic equations in nonsmooth domains
arXiv:1302.0266 [math.AP] (Published 2013-02-01)
Riesz potentials and nonlinear parabolic equations