arXiv Analytics

Sign in

arXiv:1202.1335 [math.NT]AbstractReferencesReviewsResources

Representations of analytic functions as infinite products and their application to numerical computations

Marcin Mazur, Bogdan V. Petrenko

Published 2012-02-07, updated 2012-04-04Version 3

Let $D$ be an open disk of radius $\le 1$ in $\mathbb C$, and let $(\epsilon_n)$ be a sequence of $\pm 1$. We prove that for every analytic function $f: D \to \mathbb C$ without zeros in $D$, there exists a unique sequence $(\alpha_n)$ of complex numbers such that $f(z) = f(0)\prod_{n=1}^{\infty} (1+\epsilon_nz^n)^{\alpha_n}$ for every $z \in D$. From this representation we obtain a numerical method for calculating products of the form $\prod_{p \text{prime}} f(1/p)$ provided $f(0)=1$ and $f'(0) = 0$; our method generalizes a well known method of Pieter Moree. We illustrate this method on a constant of Ramanujan $\pi^{-1/2}\prod_{p \text{prime}} \sqrt{p^2-p}\ln(p/(p-1))$. From the properties of the exponents $\alpha_n$, we obtain a proof of the following congruences, which have been the subject of several recent publications motivated by some questions of Arnold: for every $n \times n$ integral matrix $A$, every prime number $p$, and every positive integer $k$ we have $\text{tr} A^{p^k} \equiv \text{tr} A^{p^{k-1}} (\text{mod}\,{p^k})$.

Comments: Several editorial changes have been made
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:math/0112321 [math.NT] (Published 2001-12-05)
Abeliants and their application to an elementary construction of Jacobians
arXiv:1407.7289 [math.NT] (Published 2014-07-27, updated 2015-01-28)
Hardy-Littlewood Conjecture and Exceptional real Zero
arXiv:1206.0486 [math.NT] (Published 2012-06-03, updated 2012-08-17)
Complete Residue Systems: A Primer and an Application