arXiv Analytics

Sign in

arXiv:1201.6595 [math.DS]AbstractReferencesReviewsResources

From First Lyapunov Coefficients to Maximal Canards

Christian Kuehn

Published 2012-01-31Version 1

Hopf bifurcations in fast-slow systems of ordinary differential equations can be associated with surprising rapid growth of periodic orbits. This process is referred to as canard explosion. The key step in locating a canard explosion is to calculate the location of a special trajectory, called a maximal canard, in parameter space. A first-order asymptotic expansion of this location was found by Krupa and Szmolyan in the framework of a "canard point"-normal-form for systems with one fast and one slow variable. We show how to compute the coefficient in this expansion using the first Lyapunov coefficient at the Hopf bifurcation thereby avoiding use of this normal form. Our results connect the theory of canard explosions with existing numerical software, enabling easier calculations of where canard explosions occur.

Comments: preprint version - for final version see journal reference
Journal: International Journal of Bifurcation and Chaos, Vol. 20, No. 5, pp. 1467-1475, 2010
Categories: math.DS, math.NA, nlin.CD
Related articles: Most relevant | Search more
arXiv:1512.03002 [math.DS] (Published 2015-12-09)
Uncertainty Transformation via Hopf Bifurcation in Fast-Slow Systems
arXiv:2404.08428 [math.DS] (Published 2024-04-12)
Hopf Bifurcation in Asymmetric Ring Networks: Constraints on Phase Shifts
arXiv:0802.4438 [math.DS] (Published 2008-02-29, updated 2008-03-04)
Hopf Bifurcations in a Watt Governor With a Spring