arXiv:1201.2310 [math.NT]AbstractReferencesReviewsResources
Constructing non-trivial elements of the Shafarevich-Tate group of an Abelian Variety over a Number Field
Published 2012-01-11, updated 2012-04-02Version 2
The second part of the Birch and Swinnerton-Dyer (BSD) conjecture gives a conjectural formula for the order of the Shafarevich-Tate group of an elliptic curve in terms of other computable invariants of the curve. Cremona and Mazur initiated a theory that can often be used to verify the BSD conjecture by constructing non-trivial elements of the Shafarevich-Tate group of an elliptic curve by means of the Mordell-Weil group of an ambient curve. In this paper, we generalize Cremona and Mazur's work and give precise conditions under which such a construction can be made for the Shafarevich-Tate group of an abelian variety over a number field. We then give an extension of our general result that provides new theoretical evidence for the BSD conjecture.