arXiv Analytics

Sign in

arXiv:1111.5736 [math.CO]AbstractReferencesReviewsResources

Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns

Anders Claesson, Vít Jelínek, Einar Steingrímsson

Published 2011-11-24Version 1

We prove that the Stanley-Wilf limit of any layered permutation pattern of length $\ell$ is at most $4\ell^2$, and that the Stanley-Wilf limit of the pattern 1324 is at most 16. These bounds follow from a more general result showing that a permutation avoiding a pattern of a special form is a merge of two permutations, each of which avoids a smaller pattern. If the conjecture is true that the maximum Stanley-Wilf limit for patterns of length $\ell$ is attained by a layered pattern then this implies an upper bound of $4\ell^2$ for the Stanley-Wilf limit of any pattern of length $\ell$. We also conjecture that, for any $k\ge 0$, the set of 1324-avoiding permutations with $k$ inversions contains at least as many permutations of length $n+1$ as those of length $n$. We show that if this is true then the Stanley-Wilf limit for 1324 is at most $e^{\pi\sqrt{2/3}} \simeq 13.001954$.

Journal: J. Comb. Theory A, 119(8) (2012), 1680-1691
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:math/0009230 [math.CO] (Published 2000-09-26)
The conjecture cr(C_m\times C_n)=(m-2)n is true for all but finitely many n, for each m
arXiv:math/0508537 [math.CO] (Published 2005-08-26)
On a conjecture of Widom
arXiv:math/0610977 [math.CO] (Published 2006-10-31)
New results related to a conjecture of Manickam and Singhi