arXiv Analytics

Sign in

arXiv:1111.1996 [math.DS]AbstractReferencesReviewsResources

Divergence and convergence of conjugacies in non-Archimedean dynamics

Karl-Olof Lindahl

Published 2011-11-08Version 1

We continue the study in [21] of the linearizability near an indif- ferent fixed point of a power series f, defined over a field of prime characteristic p. It is known since the work of Herman and Yoccoz [13] in 1981 that Siegel's linearization theorem [27] is true also for non- Archimedean fields. However, they also showed that the condition in Siegel's theorem is 'usually' not satisfied over fields of prime character- istic. Indeed, as proven in [21], there exist power series f such that the associated conjugacy function diverges. We prove that if the degrees of the monomials of a power series f are divisible by p, then f is analyt- ically linearizable. We find a lower (sometimes the best) bound of the size of the corresponding linearization disc. In the cases where we find the exact size of the linearization disc, we show, using the Weierstrass degree of the conjugacy, that f has an indifferent periodic point on the boundary. We also give a class of polynomials containing a monomial of degree prime to p, such that the conjugacy diverges.

Journal: Contemporary matematics, Amer. Math. Soc., Vol. 508, pp. 89-109, 2010
Categories: math.DS, math.NT
Subjects: 32P05, 32H50, 37F50, 11R58
Related articles: Most relevant | Search more
arXiv:0810.1581 [math.DS] (Published 2008-10-09, updated 2009-06-29)
Powers of sequences and convergence of ergodic averages
arXiv:2102.00357 [math.DS] (Published 2021-01-31)
On geometrically finite degenerations II: convergence and divergence
arXiv:1001.4081 [math.DS] (Published 2010-01-22, updated 2010-11-30)
Multiple recurrence and convergence along the primes