arXiv:1111.1685 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Green's Function Method for Line Defects and Gapless Modes in Topological Insulators : Beyond Semiclassical Approach
Ken Shiozaki, Satoshi Fujimoto
Published 2011-11-07, updated 2012-01-13Version 2
Defects which appear in heterostructure junctions involving topological insulators are sources of gapless modes governing the low energy properties of the systems, as recently elucidated by Teo and Kane [Physical Review B82, 115120 (2010)]. A standard approach for the calculation of topological invariants associated with defects is to deal with the spatial inhomogeneity raised by defects within a semiclassical approximation. In this paper, we propose a full quantum formulation for the topological invariants characterizing line defects in three-dimensional insulators with no symmetry by using the Green's function method. On the basis of the full quantum treatment, we demonstrate the existence of a nontrivial topological invariant in the topological insulator-ferromagnet tri-junction systems, for which a semiclassical approximation fails to describe the topological phase. Also, our approach enables us to study effects of electron-electron interactions and impurity scattering on topological insulators with spatial inhomogeneity which gives rise to the Axion electrodynamics responses.