arXiv Analytics

Sign in

arXiv:1111.0340 [math.AP]AbstractReferencesReviewsResources

The Incompressible Euler Limit of the Boltzmann Equation with Accommodation Boundary Condition

Claude Bardos, François Golse, Lionel Paillard

Published 2011-11-01Version 1

The convergence of solutions of the incompressible Navier-Stokes equations set in a domain with boundary to solutions of the Euler equations in the large Reynolds number limit is a challenging open problem both in 2 and 3 space dimensions. In particular it is distinct from the question of existence in the large of a smooth solution of the initial-boundary value problem for the Euler equations. The present paper proposes three results in that direction. First, if the solutions of the Navier-Stokes equations satisfy a slip boundary condition with vanishing slip coefficient in the large Reynolds number limit, we show by an energy method that they converge to the classical solution of the Euler equations on its time interval of existence. Next we show that the incompressible Navier-Stokes limit of the Boltzmann equation with Maxwell's accommodation condition at the boundary is governed by the Navier-Stokes equations with slip boundary condition, and we express the slip coefficient at the fluid level in terms of the accommodation parameter at the kinetic level. This second result is formal, in the style of [Bardos-Golse-Levermore, J. Stat. Phys. 63 (1991), 323-344]. Finally, we establish the incompressible Euler limit of the Boltzmann equation set in a domain with boundary with Maxwell's accommodation condition assuming that the accommodation parameter is small enough in terms of the Knudsen number. Our proof uses the relative entropy method following closely the analysis in [L. Saint-Raymond, Arch. Ration. Mech. Anal. 166 (2003), 47-80] in the case of the 3-torus, except for the boundary terms, which require special treatment.

Comments: 40 pages
Journal: Communications in Mathematical Sciences, Vol. 10 (2012), No. 1, pp. 159-190
Categories: math.AP, math-ph, math.MP
Subjects: 35Q30, 82B40, 76D05, 76B99
Related articles: Most relevant | Search more
arXiv:1111.0344 [math.AP] (Published 2011-11-01)
From the Boltzmann Equation to the Euler Equations in the Presence of Boundaries
arXiv:1006.4048 [math.AP] (Published 2010-06-21, updated 2011-08-13)
The incompressible Euler limit of the Boltzmann equation for a gas of fermions
arXiv:0901.2290 [math.AP] (Published 2009-01-15)
Acoustic Limit for the Boltzmann equation in Optimal Scaling