arXiv Analytics

Sign in

arXiv:1110.5774 [math.FA]AbstractReferencesReviewsResources

Spaceability of sets of nowhere $L^q$ functions

Pedro L. Kaufmann, Leonardo Pellegrini

Published 2011-10-26Version 1

We say that a function $f:[0,1]\rightarrow \R$ is \emph{nowhere $L^q$} if, for each nonvoid open subset $U$ of $[0,1]$, the restriction $f|_U$ is not in $L^q(U)$. For a fixed $1 \leq p <\infty$, we will show that the set $$ S_p\doteq {f \in L^p[0,1]: f is nowhere $L^q$, for each p<q \leq \infty}, $$ united with ${0}$, contains an isometric and complemented copy of $\ell_p$. In particular, this improves a result from G. Botelho, V. F\'avaro, D. Pellegrino, and J. B. Seoane-Sep\'ulveda, $L_p[0,1]\setminus \cup_{q>p} L_q[0,1]$ is spaceable for every $p>0$, preprint, 2011., since $S_p$ turns out to be spaceable. In addition, our result is a generalization of one of the main results from S. G{\l}\c{a}b, P. L. Kaufmann, and L. Pellegrini, Spaceability and algebrability of sets of nowhere integrable functions, preprint, 2011.

Related articles: Most relevant | Search more
arXiv:2403.19855 [math.FA] (Published 2024-03-28)
Spaceability of sets of non-injective maps
arXiv:1501.01785 [math.FA] (Published 2015-01-08)
On complemented copies of $c_0(ω_1)$ in $C(K^n)$ spaces
arXiv:1709.01114 [math.FA] (Published 2017-09-04)
When does $C(K,X)$ contain a complemented copy of $c_0(Γ)$ iff $X$ does?