arXiv:1110.4981 [math.RT]AbstractReferencesReviewsResources
The Euler characteristic of a Hecke algebra
Published 2011-10-22, updated 2014-05-23Version 4
It is shown that the Euler characteristic $\chi_{(\mathcal{H},\mathcal{B},\epsilon_q)}$ of a $\mathbb{Z}[[q]]$-Hecke algebra $\mathcal{H}$ associated with a finitely generated Coxeter group $(W,S)$ coincides with $p_{(W,S)}(q)^{-1}$, where $p_{(W,S)}(t)$ is the Poincar\'e series of $(W,S)$.
Related articles: Most relevant | Search more
arXiv:1512.04485 [math.RT] (Published 2015-12-14)
Yang-Baxter basis of Hecke algebra and Casselman's problem (extended abstract)
arXiv:1407.6375 [math.RT] (Published 2014-07-23)
Finite dimensional quotients of Hecke algebras
arXiv:0705.1581 [math.RT] (Published 2007-05-11)
A new integral basis for the centre of the Hecke algebra of type A