arXiv:1110.3209 [math.CO]AbstractReferencesReviewsResources
Noncommutative symmetric functions with matrix parameters
Alain Lascoux, Jean-Christophe Novelli, Jean-Yves Thibon
Published 2011-10-14Version 1
We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the noncommutative Macdonald functions of Bergeron and Zabrocki.
Comments: 21 pages
Journal: J. Algebraic Combin. 2012
Categories: math.CO
Keywords: noncommutative symmetric functions, matrix parameters, binary tree, appropriate specializations, two-vector families
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2106.08257 [math.CO] (Published 2021-06-15)
Noncommutative Symmetric Functions and Lagrange Inversion II: Noncrossing partititions and the Farahat-Higman algebra
arXiv:2406.13728 [math.CO] (Published 2024-06-19)
A Combinatorial Perspective on the Noncommutative Symmetric Functions
arXiv:2305.08132 [math.CO] (Published 2023-05-14)
Noncommutative symmetric functions and skewing operators