arXiv:1109.6408 [astro-ph.SR]AbstractReferencesReviewsResources
A Detailed Study of Spitzer-IRAC Emission in Herbig-Haro Objects (II): Interaction Between Ejecta and Ambient Gas
Michihiro Takami, Jennifer L. Karr, Brunella Nisini, Thomas P. Ray
Published 2011-09-29Version 1
We present a new analysis of the physical conditions in three Herbig-Haro complexes (HH 54, HH 212, and the L 1157 protostellar jet) using archival data from the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. As described in detail in Paper I, the emission observed using the 4.5-micron filter is enhanced in molecular shocks (T=1000-4000 K) at relatively high temperature or densities compared with that observed with the 8.0-micron filter. Using these data sets, we investigate different distributions of gas between high and low temperatures/densities. Our analysis reveals the presence of a number of warm/dense knots, most of which appear to be associated with working surfaces such as the head of bow shocks and cometary features, and reverse shocks in the ejecta. These are distributed not only along the jet axis, as expected, but also across it. While some knotty or fragmenting structures can be explained by instabilities in shocked flows, others can be more simply explained by the scenario that the mass ejection source acts as a "shot gun", periodically ejecting bullets of material along similar but not identical trajectories. Such an explanation challenges to some degree the present paradigm for jet flows associated with low-mass protostars. It also give clues to reconciling our understanding of the mass ejection mechanism in high and low mass protostars and evolved stars.