arXiv:1109.0307 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Pseudospin Order in Monolayer, Bilayer, and Double-Layer Graphene
Allan H. MacDonald, Jeil Jung, Fan Zhang
Published 2011-09-01, updated 2012-01-18Version 3
Graphene is a gapless semiconductor in which conduction and valence band wavefunctions differ only in the phase difference between their projections onto the two sublattices of the material's two-dimensional honeycomb crystal structure. We explain why this circumstance creates openings for broken symmetry states, including antiferromagnetic states in monolayer and bilayer graphene and exciton condensates in double-layer graphene, that are momentum space analogs of the real-space order common in systems with strong local interactions. We discuss some similarities among, and some differences between, these three broken symmetry states.