arXiv:1108.6210 [math.NA]AbstractReferencesReviewsResources
A well-balanced finite volume scheme for 1D hemodynamic simulations
Olivier Delestre, Pierre-Yves Lagrée
Published 2011-08-31, updated 2012-01-10Version 2
We are interested in simulating blood flow in arteries with variable elasticity with a one dimensional model. We present a well-balanced finite volume scheme based on the recent developments in shallow water equations context. We thus get a mass conservative scheme which also preserves equilibria of Q=0. This numerical method is tested on analytical tests.
Comments: 6 pages. R\'esum\'e en fran\c{c}ais : Nous nous int\'eressons \`a la simulation d'\'ecoulements sanguins dans des art\`eres dont les parois sont \`a \'elasticit\'e variable. Ceci est mod\'elis\'e \`a l'aide d'un mod\`ele unidimensionnel. Nous pr\'esentons un sch\'ema "volume fini \'equilibr\'e" bas\'e sur les d\'eveloppements r\'ecents effectu\'es pour la r\'esolution du syst\`eme de Saint-Venant. Ainsi, nous obtenons un sch\'ema qui pr\'eserve le volume de fluide ainsi que les \'equilibres au repos: Q=0. Le sch\'ema introduit est test\'e sur des solutions analytiques
Keywords: well-balanced finite volume scheme, 1d hemodynamic simulations, shallow water equations context, dimensional model, simulating blood flow
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1205.6033 [math.NA] (Published 2012-05-28)
A "well-balanced" finite volume scheme for blood flow simulation
arXiv:1811.10373 [math.NA] (Published 2018-11-26)
Hybrid models for simulating blood flow in microvascular networks
arXiv:1912.09577 [math.NA] (Published 2019-12-19)
An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity