arXiv:1108.4191 [math.OC]AbstractReferencesReviewsResources
Chains of Kinematic Points
Avraham Feintuch, Bruce Francis
Published 2011-08-21Version 1
In formulating the stability problem for an infinite chain of cars, state space is traditionally taken to be the Hilbert space $\ell^2$, wherein the displacements of cars from their equilibria, or the velocities from their equilibria, are taken to be square summable. But this obliges the displacements or velocity perturbations of cars that are far down the chain to be vanishingly small and leads to anomalous behaviour. In this paper an alternative formulation is proposed wherein state space is the Banach space $\ell^\infty$, allowing the displacements or velocity perturbations of cars from their equilibria to be merely bounded.
Comments: Provisionally accepted in Automatica
Related articles: Most relevant | Search more
arXiv:1706.04542 [math.OC] (Published 2017-06-08)
Operationalization of Topology of Sustainable Management to Estimate Qualitatively Different Regions in State Space
Semistability of Nonlinear Systems Having a Continuum of Equilibria and Time-Varying Delays
arXiv:1503.07935 [math.OC] (Published 2015-03-27)
Finite composite games: Equilibria and dynamics