arXiv Analytics

Sign in

arXiv:1108.3197 [math.NT]AbstractReferencesReviewsResources

On the mod $p^2$ determination of $\sum_{k=1}^{p-1}H_k/(k\cdot 2^k)$: another proof of a conjecture by Sun

Romeo Mestrovic

Published 2011-08-16, updated 2011-08-18Version 2

For a positive integer $n$ let $H_n=\sum_{k=1}^{n}1/k$ be the $n$th harmonic number. Z. W. Sun conjectured that for any prime $p\ge 5$, $$ \sum_{k=1}^{p-1}\frac{H_k}{k\cdot 2^k} \equiv7/24pB_{p-3}\pmod{p^2}. $$ This conjecture is recently confirmed by Z. W. Sun and L. L. Zhao. In this note we give another proof of the above congruence by establishing congruences for all the sums of the form $\sum_{k=1}^{p-1}2^{\pm k}H_k^r/k^s \,(\bmod{\, p^{4-r-s}})$ with $(r,s)\in\{(1,1),(1,2),(2,1) \}$.

Comments: Pages 20
Categories: math.NT
Subjects: 11B75, 11A07, 11B68, 05A19, 05A10
Related articles: Most relevant | Search more
arXiv:math/0606670 [math.NT] (Published 2006-06-27, updated 2006-10-26)
On a conjecture of Deutsch, Sagan, and Wilson
arXiv:1010.2489 [math.NT] (Published 2010-10-12, updated 2014-08-07)
Proof of three conjectures on congruences
arXiv:1312.1166 [math.NT] (Published 2013-12-04, updated 2014-02-27)
On $a^n+bn$ modulo $m$