arXiv:1108.2366 [math.DG]AbstractReferencesReviewsResources
Modular classes of skew algebroid relations
Published 2011-08-11Version 1
Skew algebroid is a natural generalization of the concept of Lie algebroid. In this paper, for a skew algebroid E, its modular class mod(E) is defined in the classical as well as in the supergeometric formulation. It is proved that there is a homogeneous nowhere-vanishing 1-density on E* which is invariant with respect to all Hamiltonian vector fields if and only if E is modular, i.e. mod(E)=0. Further, relative modular class of a subalgebroid is introduced and studied together with its application to holonomy, as well as modular class of a skew algebroid relation. These notions provide, in particular, a unified approach to the concepts of a modular class of a Lie algebroid morphism and that of a Poisson map.