arXiv Analytics

Sign in

arXiv:1107.4814 [math.FA]AbstractReferencesReviewsResources

Estimates for the asymptotic behavior of the constants in the Bohnenblust--Hille inequality

G. A. Muñoz-Fernández, D. Pellegrino, J. B. Seoane-Sepúlveda

Published 2011-07-24Version 1

A classical inequality due to H.F. Bohnenblust and E. Hille states that for every positive integer $n$ there is a constant $C_{n}>0$ so that $$(\sum\limits_{i_{1},...,i_{n}=1}^{N}|U(e_{i_{^{1}}},...,e_{i_{n}})|^{\frac{2n}{n+1}})^{\frac{n+1}{2n}}\leq C_{n}||U||$$ for every positive integer $N$ and every $n$-linear mapping $U:\ell_{\infty}^{N}\times...\times\ell_{\infty}^{N}\rightarrow\mathbb{C}$. The original estimates for those constants from Bohnenblust and Hille are $$C_{n}=n^{\frac{n+1}{2n}}2^{\frac{n-1}{2}}.$$ In this note we present explicit formulae for quite better constants, and calculate the asymptotic behavior of these estimates, completing recent results of the second and third authors. For example, we show that, if $C_{\mathbb{R},n}$ and $C_{\mathbb{C},n}$ denote (respectively) these estimates for the real and complex Bohnenblust--Hille inequality then, for every even positive integer $n$, $$\frac{C_{\mathbb{R},n}}{\sqrt{\pi}} = \frac{C_{\mathbb{C},n}}{\sqrt{2}} = 2^{\frac{n+2}{8}}\cdot r_n$$ for a certain sequence $\{r_n\}$ which we estimate numerically to belong to the interval $(1,3/2)$ (the case $n$ odd is similar). Simultaneously, assuming that $\{r_n\}$ is in fact convergent, we also conclude that $$\displaystyle \lim_{n \rightarrow \infty} \frac{C_{\mathbb{R},n}}{C_{\mathbb{R},n-1}} = \displaystyle \lim_{n \rightarrow \infty} \frac{C_{\mathbb{C},n}}{C_{\mathbb{C},n-1}}= 2^{1/8}.$$

Comments: 7 pages
Journal: Linear and Multilinear Algebra 60 (2012) 573-582
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1403.2114 [math.FA] (Published 2014-03-09, updated 2016-01-10)
Asymptotic behavior of operator sequences on KB-spaces
arXiv:1301.1539 [math.FA] (Published 2013-01-08, updated 2015-02-11)
On the optimality of the hypercontractivity of the complex Bohnenblust--Hille inequality
arXiv:1405.6637 [math.FA] (Published 2014-05-26, updated 2014-07-24)
The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces