arXiv Analytics

Sign in

arXiv:1107.2082 [math.RT]AbstractReferencesReviewsResources

Classification of Simple Lie Algebras on a Lattice

Kenji Iohara, Olivier Mathieu

Published 2011-07-11, updated 2012-04-03Version 2

Let $\Lambda$ be a lattice of rank $n$. A Lie algebra on the lattice $\Lambda$ is a Lie algebra ${\cal L}=\oplus_{\lambda\in\Lambda}\,{\cal L}_{\lambda}$ such that $\dim\,{\cal L}_\lambda=1$ for all $\lambda$. In this article, we classify all simple graded Lie algebras on a lattice.

Related articles: Most relevant | Search more
arXiv:1402.5096 [math.RT] (Published 2014-02-20)
On the equations and classification of toric quiver varieties
arXiv:1210.0646 [math.RT] (Published 2012-10-02, updated 2015-12-09)
A classification of the irreducible mod-p representations of U(1,1)(Q_p^2/Q_p)
arXiv:0904.1318 [math.RT] (Published 2009-04-08)
Classification of simple q_2-supermodules