arXiv Analytics

Sign in

arXiv:1106.3621 [math.RT]AbstractReferencesReviewsResources

Minimal representations via Bessel operators

Joachim Hilgert, Toshiyuki Kobayashi, Jan Möllers

Published 2011-06-18, updated 2012-06-21Version 4

We construct an L^2-model of "very small" irreducible unitary representations of simple Lie groups G which, up to finite covering, occur as conformal groups Co(V) of simple Jordan algebras V. If $V$ is split and G is not of type A_n, then the representations are minimal in the sense that the annihilators are the Joseph ideals. Our construction allows the case where G does not admit minimal representations. In particular, applying to Jordan algebras of split rank one we obtain the entire complementary series representations of SO(n,1)_0. A distinguished feature of these representations in all cases is that they attain the minimum of the Gelfand--Kirillov dimensions among irreducible unitary representations. Our construction provides a unified way to realize the irreducible unitary representations of the Lie groups in question as Schroedinger models in L^2-spaces on Lagrangian submanifolds of the minimal real nilpotent coadjoint orbits. In this realization the Lie algebra representations are given explicitly by differential operators of order at most two, and the key new ingredient is a systematic use of specific second-order differential operators (Bessel operators) which are naturally defined in terms of the Jordan structure.

Related articles: Most relevant | Search more
arXiv:2102.09121 [math.RT] (Published 2021-02-18)
Characters of irreducible unitary representations of $U(n, n+1)$ via double lifting from $U(1)$
arXiv:1512.01387 [math.RT] (Published 2015-12-04)
Polynomial realisations of Lie (super)algebras and Bessel operators
arXiv:1301.5505 [math.RT] (Published 2013-01-23)
Special Functions in Minimal Representations