arXiv:1106.2331 [math.GR]AbstractReferencesReviewsResources
Automorphisms of Partially Commutative Groups II: Combinatorial Subgroups
Andrew J. Duncan, Vladimir N. Remeslennikov
Published 2011-06-12, updated 2012-04-24Version 2
We define several "standard" subgroups of the automorphism group Aut(G) of a partially commutative (right-angled Artin) group and use these standard subgroups to describe decompositions of Aut(G). If C is the commutation graph of G, we show how Aut(G) decomposes in terms of the connected components of C: obtaining a particularly clear decomposition theorem in the special case where C has no isolated vertices. If C has no vertices of a type we call dominated then we give a semi-direct decompostion of Aut(G) into a subgroup of locally conjugating automorphisms by the subgroup stabilising a certain lattice of "admissible subsets" of the vertices of C. We then characterise those graphs for which Aut(G) is a product (not necessarily semi-direct) of two such subgroups.