arXiv Analytics

Sign in

arXiv:1106.0914 [math.AP]AbstractReferencesReviewsResources

Stable blow up dynamics for the 1-corotational energy critical harmonic heat flow

Pierre Raphael, Remi Schweyer

Published 2011-06-05Version 1

We exhibit a stable finite time blow up regime for the 1-corotational energy critical harmonic heat flow from $\Bbb R^2$ into a smooth compact revolution surface of $\Bbb R^3$ which reduces to the semilinear parabolic problem $$\partial_t u -\pa^2_{r} u-\frac{\pa_r u}{r} + \frac{f(u)}{r^2}=0$$ for a suitable class of functions $f$. The corresponding initial data can be chosen smooth, well localized and arbitrarily close to the ground state harmonic map in the energy critical topology. We give sharp asymptotics on the corresponding singularity formation which occurs through the concentration of a universal bubble of energy at the speed predicted in [Van den Bergh, J.; Hulshof, J.; King, J., Formal asymptotics of bubbling in the harmonic map heat flow, SIAM J. Appl. Math. vol 63, o5. pp 1682-1717]. Our approach lies in the continuation of the study of the 1-equivariant energy critical wave map and Schr\"odinger map with $\Bbb S^2$ target in [Rapha\"el, P.; Rodnianksi, I., Stable blow up dynamics for the critical corotational wave maps and equivariant Yang Mills problems, to appear in Prep. Math. IHES.], [Merle, F.; Rapha\"el, P.; Rodnianski, I., Blow up dynamics for smooth solutions to the energy critical Schr\"odinger map, preprint 2011.].

Related articles: Most relevant | Search more
arXiv:2005.14128 [math.AP] (Published 2020-05-28)
Non-Uniqueness of Bubbling for Wave Maps
arXiv:1301.1859 [math.AP] (Published 2013-01-09)
Quantized slow blow up dynamics for the corotational energy critical harmonic heat flow
arXiv:math/9807171 [math.AP] (Published 1998-07-30, updated 2009-07-14)
Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data